Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae.
نویسندگان
چکیده
The yeast Saccharomyces cerevisiae can use alternative nitrogen sources such as arginine, urea, allantoin, gamma-aminobutyrate, or proline when preferred nitrogen sources like glutamine, asparagine, or ammonium ions are unavailable in the environment. Utilization of alternative nitrogen sources requires the relief of nitrogen repression and induction of specific permeases and enzymes. The products of the GLN3 and URE2 genes are required for the appropriate transcription of many genes in alternative nitrogen assimilatory pathways. GLN3 appears to activate their transcription when good nitrogen sources are unavailable, and URE2 appears to repress their transcription when alternative nitrogen sources are not needed. The participation of nitrogen repression and the regulators GLN3 and URE2 in the proline utilization pathway was evaluated in this study. Comparison of PUT gene expression in cells grown in repressing or derepressing nitrogen sources, in the absence of the inducer proline, indicated that both PUT1 and PUT2 are regulated by nitrogen repression, although the effect on PUT2 is comparatively small. Recessive mutations in URE2 elevated expression of the PUT1 and PUT2 genes 5- to 10-fold when cells were grown on a nitrogen-repressing medium. Although PUT3, the proline utilization pathway transcriptional activator, is absolutely required for growth on proline as the sole nitrogen source, a put3 ure2 strain had somewhat elevated PUT gene expression, suggesting an effect of the ure2 mutation in the absence of the PUT3 product. PUT1 and PUT2 gene expression did not require the GLN3 activator protein for expression under either repressing or derepressing conditions. Therefore, regulation of the PUT genes by URE2 does not require a functional GLN3 protein. The effect of the ure2 mutation on the PUT genes is not due to increased internal proline levels. URE2 repression appears to be limited to nitrogen assimilatory systems and does not affect genes involved in carbon, inositol, or phosphate metabolism or in mating-type control and sporulation.
منابع مشابه
Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes.
Mutations in the GLN3 gene prevented a normal increase in the NAD-glutamate dehydrogenase and glutamine synthetase levels in glutamate-grown Saccharomyces cerevisiae cells, whereas mutations in the URE2 gene resulted in high levels of these enzymes in glumate- and glutamine-grown cells. A ure2 gln3 double mutant had low levels of glutamate dehydrogenase and glutamine synthetase in cells grown o...
متن کاملNitrogen Starvation and TorC1 Inhibition Differentially Affect Nuclear Localization of the Gln3 and Gat1 Transcription Factors Through the Rare Glutamine tRNACUG in S. cerevisiae
A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, isn’t subject to leucine-dependent TorC1 activation. This led us...
متن کاملAmmonia regulates VID30 expression and Vid30p function shifts nitrogen metabolism toward glutamate formation especially when Saccharomyces cerevisiae is grown in low concentrations of ammonia.
The GATA family proteins Gln3p and Gat1p mediate nitrogen catabolite repression (NCR)-sensitive transcription in Saccharomyces cerevisiae. When cells are cultured with a good nitrogen source (glutamine, ammonia), Gln3p and Gat1p are restricted to the cytoplasm, whereas with a poor nitrogen source (proline), they localize to the nucleus, bind to the GATA sequences of NCR-sensitive gene promoters...
متن کاملNitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.
A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led u...
متن کاملComponents of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive regulation of the yeast GATA factors
Nitrogen catabolite repression (NCR) is the regulatory pathway through which Saccharomyces cerevisiae responds to the available nitrogen status and selectively utilizes rich nitrogen sources in preference to poor ones. Expression of NCR-sensitive genes is mediated by two transcription activators, Gln3 and Gat1, in response to provision of a poorly used nitrogen source or following treatment wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 15 4 شماره
صفحات -
تاریخ انتشار 1995